Spectral and timing properties of IGR J00291+5934 during its 2015 outburst
Abstract
We report on the spectral and timing properties of the accreting millisecond X-ray pulsar IGR J00291+5934 observed by XMM-Newton and NuSTAR during its 2015 outburst. The source is in a hard state dominated at high energies by a Comptonization of soft photons (∼0.9 keV) by an electron population with kTe ∼ 30 keV, and at lower energies by a blackbody component with kT ∼ 0.5 keV. A moderately broad, neutral Fe emission line and four narrow absorption lines are also found. By investigating the pulse phase evolution, we derived the best-fitting orbital solution for the 2015 outburst. Comparing the updated ephemeris with those of the previous outbursts, we set a 3σ confidence level interval -6.6 × 10-13 s s-1 < dot{P}_{orb} < 6.5 × 10^{-13} s s-1 on the orbital period derivative. Moreover, we investigated the pulse profile dependence on energy finding a peculiar behaviour of the pulse fractional amplitude and lags as a function of energy. We performed a phase-resolved spectroscopy showing that the blackbody component tracks remarkably well the pulse profile, indicating that this component resides at the neutron star surface (hotspot).
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- April 2017
- DOI:
- 10.1093/mnras/stw3332
- arXiv:
- arXiv:1612.03865
- Bibcode:
- 2017MNRAS.466.2910S
- Keywords:
-
- accretion;
- accretion discs;
- stars: neutron;
- X-rays: binaries;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 9 pages, 7 figures. Accepted for publication in MNRAS