Effects of slag on flexural strength of slurry infiltrated fibrous concrete
Abstract
Slurry infiltrated fibrous concrete is one of the new advanced concrete composite which differs from method of fabrication and composition of the matrix. Extensive research is being carried out on alternative binders or supplements to cement aiming to reduce environmental impact. However, little has been published to investigate the structural behaviour of SIFCON incorporating with mineral admixtures, particularly as regards its ultrahigh ductility, which may alter the mode of failure from brittle to the more desirable ductile. An experimental study was carried out to investigate the flexural behavior of SIFCON containing three different percentage of fibre content 6%,8% &10% with incorporation of optimum dosage of blast furnace slag replaced by cement. Strength characteristics such as Compressive strength and splitting tensile strength test were carry out for SIFCON incorporating 10% of fibre content and different percentage of slag (0, 15, 30, 45, 60%&75%) to optimize the replacement level. The test results found that the maximum strengths were attained at 30% of blast furnace slag replaced by cement. To study the flexural behavior of SIFCON beam of size 1.2x0.1x0.2m containing different percentages (6%, 8% & 10%) fibre content incorporating with and without the optimum percentage of slag were cast and tested. Both flexural strength and Load displacement characteristics of the specimens were studied under flexure. The outcomespresentedfromtest resultshave been compared. The test results reveals that the flexural strength, toughness, ductility and stiffness characteristics were significantly improved due to incorporation of optimum dosage of slag enhancing when compared to without mineral admixtures also compared to conventional concrete(RCC). Major conclusions were drawn from the investigations which are presented.
- Publication:
-
IOP Conference Series: Earth and Environmental Science
- Pub Date:
- July 2017
- DOI:
- 10.1088/1755-1315/80/1/012036
- Bibcode:
- 2017E&ES...80a2036E