Generation of Rising-tone Chorus in a Two-dimensional Mirror Field by Using the General Curvilinear PIC Code
Abstract
Recently, the generation of rising-tone chorus has been implemented with one-dimensional (1-D) particle-in-cell (PIC) simulations in an inhomogeneous background magnetic field, where both the propagation of waves and motion of electrons are simply forced to be parallel to the background magnetic field. We have developed a two-dimensional(2-D) general curvilinear PIC simulation code, and successfully reproduced rising-tone chorus waves excited from an anisotropic electron distribution in a 2-D mirror field. Our simulation results show that whistler waves are mainly generated around the magnetic equator, and continuously gain growth during their propagation toward higher-latitude regions. The rising-tone chorus waves are formed off the magnetic equator, which propagate quasi-parallel to the background magnetic field with the finite wave normal angle. Due to the propagating effect, the wave normal angle of chorus waves is increasing during their propagation toward higher-latitude regions along an enough curved field line. The chirping rate of chorus waves are found to be larger along a field line more close to the middle field line in the mirror field.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSM51B2426K
- Keywords:
-
- 7829 Kinetic waves and instabilities;
- SPACE PLASMA PHYSICS;
- 7836 MHD waves and instabilities;
- SPACE PLASMA PHYSICS;
- 7867 Wave/particle interactions;
- SPACE PLASMA PHYSICS;
- 7954 Magnetic storms;
- SPACE WEATHER