An embedding structure of the cross-tail CSs and its relation to the ion composition according to MAVEN observations in the Martian magnetotai
Abstract
The multilayered (embedded) Current Sheets (CS) are often observed in the Earth's magnetotail. Simulations based on quasi-adiabatic dynamics of different ion components showed that the observed embedding structures can be reconstructed by taking into account the net electric currents carried by ions with different masses and, thus, with different gyroradii. The last determines the spatial scales of the corresponding current layers. The embedding can be quantitatively described by the ratio of the magnetic field value at the edges of a thin embedded layer Bext to the value of the magnetic field outside a thick CS, B0. For the Earth's magnetotail it was shown that there is a relation between the Bext/B0 and the relative densities of heavy and light ion components. In the Martian magnetotail the embedding feature is also often observed in the cross-tail CS formed by the draping of the IMF field lines. The analysis of 100 CS crossings by MAVEN spacecraft showed that in the Martian magnetotail the relation between the embedding characteristics and ion composition is similar to the one observed in the Earth's magnetotail and the spatial scales of the embedded layers are defined by the gyroradii of the current carrying ion component.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSM33B2657G
- Keywords:
-
- 2740 Magnetospheric configuration and dynamics;
- MAGNETOSPHERIC PHYSICS;
- 2756 Planetary magnetospheres;
- MAGNETOSPHERIC PHYSICS;
- 2799 General or miscellaneous;
- MAGNETOSPHERIC PHYSICS;
- 5443 Magnetospheres;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS