The Topology and Properties of Mercury's Tail Current Sheet
Abstract
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited Mercury from March 2011 until April 2015, measuring the vector magnetic field inside and outside the magnetosphere. MESSENGER repeatedly encountered the tail current sheet (TCS) on the nightside of the planet. We examined 1s magnetic field data within 20 minutes of the magnetic equator position on 2435 orbit to characterize the shape and properties of Mercury's TCS and investigate its response to solar wind conditions. Identification of the TCS from vector magnetic field data used the following criteria: (1) a rapid rotation in the field direction from anti-sunward in the southern tail lobe to sunward in the northern lobe, accompanied by (2) a decrease in the field magnitude and (3) an increase in field variability. The current sheet was encountered on 606 orbits allowing the probability of encountering the tail current sheet in the equatorial plane to be mapped. Orbits on which the TCS was identified were binned spatially and superposed epoch analysis used to determine the field magnitude at the edge of the TCS, from which its time-averaged 3D shape was extracted. The TCS has an inner edge at 1.5 RM downtail in the midnight plane with a thickness of 0.34 RM, extends to the observation limit of 2.8 RM, decreasing in thickness to 0.28 RM. The thickness of the TCS increases in the dawn/dusk directions to 0.7 RM at 1.8 RM downtail and ± 1.5 RM from the noon-midnight plane and it warps towards the planet in the dawn/dusk directions. No strong correlations were found between the time-averaged shape and position of the TCS and solar wind conditions such as the solar wind ram pressure and the magnetic disturbance index, nor with parameters that control these conditions such as heliocentric distance. However, it is likely that the TCS does respond to these conditions on time scales too short to be characterized with MESSENGER data. In addition to mapping the shape of the current sheet, we observed that many TCS crossings exhibit the magnetic characteristics of a bifurcated current sheet rather than a typical Harris-type structure. In fact, we found that more TCS encounters can be classified as bifurcated (34%) than Harris-like (15%). This suggests the bifurcated TCS structure may be more stable and common in Mercury's magnetosphere than at Earth.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSM33B2642A
- Keywords:
-
- 2740 Magnetospheric configuration and dynamics;
- MAGNETOSPHERIC PHYSICS;
- 2756 Planetary magnetospheres;
- MAGNETOSPHERIC PHYSICS;
- 2799 General or miscellaneous;
- MAGNETOSPHERIC PHYSICS;
- 5443 Magnetospheres;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS