Peaks in Phase Space Density: A Survey of the Van Allen Probes Era
Abstract
One of the challenges of radiation belt studies is the differentiation between acceleration mechanisms, particularly local acceleration and radial diffusion. This is often done through careful examination of phase space density profiles in terms of adiabatic coordinates. In particular, local acceleration processes produce growing peaks in phase space density. Many previous studies have shown clear observations of these features for individual events. However, it remains unclear how often and where these growing peaks are observed over a long time period. With the availability of several years of high quality observations from multiple spacecraft, we now have an opportunity to quantify phase space density profiles not only for multiple events, but also across a wide range of energies. In this study, we examine phase space density from more than four years of data from the Van Allen Probes and THEMIS to determine the statistical properties of the observed peaks in phase space density. First, we determine how often growing peaks are observed. Second, we examine where the peaks are located in terms of the adiabatic invariants mu, K and L* and how these locations relate to geomagnetic indices, solar wind conditions and the plasmapause location. Third, we explore how these peaks evolve in time. Together, these results will reveal the relative importance of different acceleration processes and how these affect the various electron populations within the radiation belt.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSM32A..03B
- Keywords:
-
- 2774 Radiation belts;
- MAGNETOSPHERIC PHYSICS;
- 2778 Ring current;
- MAGNETOSPHERIC PHYSICS;
- 7845 Particle acceleration;
- SPACE PLASMA PHYSICS;
- 7954 Magnetic storms;
- SPACE WEATHER