Global Three-dimensional Simulation of the Solar Wind-Magnetosphere Interaction Using a Two-way Coupled Magnetohydrodynamics with Embedded Particle-in-Cell Model
Abstract
We perform a three-dimensional (3D) global simulation of Earth's magnetosphere with kinetic reconnection physics to study the interaction between the solar wind and Earth's magnetosphere. In this global simulation with magnetohydrodynamics with embedded particle-in-cell model (MHD-EPIC), both the dayside magnetopause reconnection region and the magnetotail reconnection region are covered with a kinetic particle-in-cell code iPIC3D, which is two-way coupled with the global MHD model BATS-R-US. We will describe the dayside reconnection related phenomena, such as the lower hybrid drift instability (LHDI) and the evolution of the flux transfer events (FTEs) along the magnetopause, and compare the simulation results with observations. We will also discuss the response of the magnetotail to the southward IMF. The onset of the tail reconnection and the properties of the magnetotail flux ropes will be discussed.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSM24A..05C
- Keywords:
-
- 2724 Magnetopause and boundary layers;
- MAGNETOSPHERIC PHYSICS;
- 2728 Magnetosheath;
- MAGNETOSPHERIC PHYSICS;
- 2784 Solar wind/magnetosphere interactions;
- MAGNETOSPHERIC PHYSICS