A Statitstical Study of Energetic Electron Phase Space Density with RBSP and BD-IES Data
Abstract
We present a statistical study of energetic electron phase space density (PSD) with combined observations from the Magnetic Electron Ion Spectrometer (MagEIS) instruments onboard the Van Allen Probes and the Image Electron Spectrometer (BD-IES) onboard an inclined geosynchronous orbit satellite. The electron PSD as a function of the adiabatic invariants is derived using one year data (Nov. 2015 to Oct. 2016) of these instruments. The orbits of the satellites cover a wide range of L-shells, allowing for the distribution of electron PSD throughout the radiation belt (L* 1 to 10). A persistent peak of energetic electron ( 30 to 1000 MeV/G) PSD is unambiguously identified at L* 5.5, which may help to understand the role of local acceleration and radial diffusion in the dynamics of energetic electrons. In addition, the electron PSD shows a power-law distribution with the exponent varying from about -2 to -4 depending on L*. The variance of electron PSD during storm and substorm activities indicating by SYMH and AE indices are also discussed.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSM21A2558C
- Keywords:
-
- 2774 Radiation belts;
- MAGNETOSPHERIC PHYSICS;
- 2778 Ring current;
- MAGNETOSPHERIC PHYSICS;
- 7845 Particle acceleration;
- SPACE PLASMA PHYSICS;
- 7954 Magnetic storms;
- SPACE WEATHER