Reconnection properties in Kelvin-Helmholtz instabilities
Abstract
Kelvin-Helmholtz instabilities are particular laboratories to study strong guide field reconnection processes. In particular, unlike the usual dayside magnetopause, the conditions across the magnetopause in KH vortices are quasi-symmetric, with low differences in beta and magnetic shear angle. We study these properties by means of statistical analysis of the high-resolution data of the Magnetospheric Multiscale mission. Several events of Kelvin-Helmholtz instabilities pas the terminator plane and a long lasting dayside instabilities event where used in order to produce this statistical analysis. Early results present a consistency between the data and the theory. In addition, the results emphasize the importance of the thickness of the magnetopause as a driver of magnetic reconnection in low magnetic shear events.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSM13B2377V
- Keywords:
-
- 2723 Magnetic reconnection;
- MAGNETOSPHERIC PHYSICS;
- 2736 Magnetosphere/ionosphere interactions;
- MAGNETOSPHERIC PHYSICS;
- 7845 Particle acceleration;
- SPACE PLASMA PHYSICS;
- 7863 Turbulence;
- SPACE PLASMA PHYSICS