Observations of wave-particle interactions in the flux pile-up region of asymmetric reconnection
Abstract
Recent observations have shown electron energization to >100keV with simultaneous whistler wave activity in the vicinity of the dayside reconnection site. We investigate one possible mechanism for producing these energetic particles. Counter-streaming electrons from the magnetosphere enter the diffusion region and are scattered to all pitch angles (PAs) by strong field-line curvature. As the electrons flow outward into the exhaust, they remagnetize and are focused toward 90° at mirror points within the flux pile-up region. This effect, combined with heating mechanisms in the EDR, produces a temperature anisotropy, while the weak magnetic field lowers the resonant energy into the bulk energy of the plasma. In the end, whistler waves are produced near 100Hz with a wave normal angle of 20°. Simultaneous with the waves, the Electron Drift Instrument observes particle flux modulations of 0° and 180° PA, 500 eV electrons. Multi-spacecraft analysis and Liouville mapping techniques allow us to determine the parallel wave current, potential, and associated energy dissipation. Bursts of 100keV electrons are observed and may interact with the whistler waves.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSM13B2370A
- Keywords:
-
- 2723 Magnetic reconnection;
- MAGNETOSPHERIC PHYSICS;
- 2736 Magnetosphere/ionosphere interactions;
- MAGNETOSPHERIC PHYSICS;
- 7845 Particle acceleration;
- SPACE PLASMA PHYSICS;
- 7863 Turbulence;
- SPACE PLASMA PHYSICS