MMS Multipoint Analysis of the Dynamics, Evolution, and Particle Acceleration Mechanisms Inside FTEs at Earth's Subsolar Magnetopause
Abstract
Flux Transfer Events (FTEs) are transient signatures of magnetic reconnection at the dayside magnetopause and play significant roles in determining the rate of reconnection and accelerating particles. This study investigates the magnetohydrodynamic forces inside and outside FTEs to infer the process through which these structures become force-free and uses electron dynamics to study the mechanisms for particle acceleration within the FTE. Akhavan-Tafti et al. [2017] demonstrated that ion-scale FTEs contain regions of elevated plasma density which greatly contribute to plasma pressure forces inside FTEs. It is shown that as FTEs evolve, the plasma is evacuated as the core magnetic field strengthens, hence becoming more force-free. The neighboring ion-scale FTEs formed at the subsolar magnetopause due to multiple X-line reconnection are forced to interact, and likely coalesce. Entropy is invoked to motivate the discussion on the essential role of coalescence in reconfiguring magnetic fields and current density distributions inside FTEs to allow for the adiabatic growth of these structures. Here, we present observational evidence which shows that, in the absence of coalescence, FTEs can become less force free. Local electron kinematics is studied to compare the contributions of parallel electric field, Fermi acceleration, and betatron acceleration mechanisms to particle heating. Acceleration due to parallel electric fields are shown to be dominant in the vicinity of the reconnection site while betatron acceleration controls perpendicular heating inside the FTE in the presence of magnetic pressure gradients. In the downstream of the reconnection site, the `freshly' reconnected field lines start to straighten due to the magnetic curvature force. Straightening field lines accelerate trapped electrons parallel to the local magnetic field (i.e., first-order Fermi acceleration). These acceleration mechanisms are shown to explain the observed anisotropic pitch angle distributions at the core and at the edges of FTEs. Finally, the forces inside non-flux rope-type FTEs (due to coalescence, expansion, contraction, or division) are shown to contribute to selective plasma heating, hence giving rise to anisotropic plasma temperatures and the subsequent wave activities (e.g. propagation of whistler waves).
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSM11D2334A
- Keywords:
-
- 2723 Magnetic reconnection;
- MAGNETOSPHERIC PHYSICS;
- 2724 Magnetopause and boundary layers;
- MAGNETOSPHERIC PHYSICS;
- 7845 Particle acceleration;
- SPACE PLASMA PHYSICS;
- 7846 Plasma energization;
- SPACE PLASMA PHYSICS