Long-term survey of lion-roar emissions inside the terrestrial magnetosheath obtained from the STAFF-SA measurements onboard the Cluster spacecraft
Abstract
Intense whistler-mode emissions known as 'lion-roars' are often observed inside the terrestrial magnetosheath, where the solar wind plasma flow slows down, and the local magnetic field increases ahead of a planetary magnetosphere. Plasma conditions in this transient region lead to the electron temperature anisotropy, which can result in the whistler-mode waves. The lion-roars are narrow-band emissions with typical frequencies between 0.1-0.5 Fce, where Fce is the electron cyclotron frequency. We present results of a long-term survey obtained by the Spatio Temporal Analysis Field Fluctuations - Spectral Analyzer (STAFF-SA) instruments on board the four Cluster spacecraft between 2001 and 2010. We have visually identified the time-frequency intervals with the intense lion-roar signature. Using the Singular Value Decomposition (SVD) method, we analyzed the wave propagation properties. We show the spatial, frequency and wave power distributions. Finally, the wave properties as a function of upstream solar wind conditions are discussed.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSM11A2280P
- Keywords:
-
- 2724 Magnetopause and boundary layers;
- MAGNETOSPHERIC PHYSICS;
- 2728 Magnetosheath;
- MAGNETOSPHERIC PHYSICS;
- 2784 Solar wind/magnetosphere interactions;
- MAGNETOSPHERIC PHYSICS