Where is the Most Likely Location Where the Secondary Interstellar Oxygen Atoms Are Created Around the Heliosheath?
Abstract
The secondary component of the interstellar neutral gas flow is originated from charge exchange between the undisturbed primary interstellar neutrals and the ions that have been deflected as they approach the heliopause. The secondary neutrals that are emitted from the interstellar ion flow through charge exchange carry information on the diverted flow and a fraction of them can travel to the Sun. Therefore, the secondary component of the interstellar neutrals is an excellent diagnostic tool to provide important information to constrain the shape of the heliopause. The presence of the secondary neutrals was predicted in the global heliospheric models and they are observed by Interstellar Boundary Explorer (IBEX) at Earth's orbit. Using the IBEX observations of neutral helium atoms, Kubiak et al. (2016, ApJS, 223, 25) approximated the parent distribution of the secondary interstellar He atoms (so-called Warm Breeze) with a homogeneous Maxwellian distribution function. Park et al. (2016, ApJ, 833, 130) analyzed IBEX observations of secondary interstellar helium and oxygen distributions at Earth's orbit. Lee et al. (2012, ApJS, 198, 10) constructed the heliospheric phase-space distribution function of an interstellar gas species in the Earth frame as a function of solar longitude. In this distribution, the authors assume that the distribution is a drifting Maxwellian at large distances from the Sun. In this study, we assume that a fraction of the secondary neutral atoms has a velocity vector toward the Sun and they can be described as a flow with a drifting Maxwellian distribution near the heliopause. Unlike the primary interstellar gas flow, the distribution of the secondary neutrals is expected to have a wide width and their bulk speeds are slower than the bulk speed of the primary interstellar gas flow. We compare Lee's distribution and IBEX observations of neutral oxygen atoms and then estimate the most likely direction where the secondary interstellar oxygen atoms are created near the heliopause.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSH51D2525P
- Keywords:
-
- 2104 Cosmic rays;
- INTERPLANETARY PHYSICS;
- 2124 Heliopause and solar wind termination;
- INTERPLANETARY PHYSICS;
- 2126 Heliosphere/interstellar medium interactions;
- INTERPLANETARY PHYSICS;
- 2144 Interstellar gas;
- INTERPLANETARY PHYSICS