Preliminary Data Pipeline for SunRISE: Assessing the Performance of Space Based Radio Arrays
Abstract
The Sun Radio Interferometer Space Experiment (SunRISE) is a NASA Heliophysics Explorer Mission of Opportunity that was recently awarded phase A funding. SunRISE's main science goals are to localize the source of particle acceleration in coronal mass ejections to 1/4th of their width, and trace the path of electron beams along magnetic field lines out to 20 solar radii. These processes generate cascading Type II and III bursts that have ever only been detected in low frequencies with single spacecraft antenna. These bursts emit below the ionospheric cutoff of 10 MHz past 2 solar radii, so a synthetic aperture made from multiple space antennae is needed to pinpoint the origin of these bursts. In this work, we create an end to end simulation of the data processing pipeline of SunRISE, which uses 6 small satellites to do this localization. One of the main inputs of the simulation is a ground truth of what we want the array to image. We idealized this as an elliptical Gaussian offset from the sun, which previous modeling suggests is a good approximation of what SunRISE would see in space. Another input is an orbit file describing the positions of all the spacecraft. The simulated orbit determinations are made with GPS sidelobes and have an error associated with the recovered positions. From there we compute the Fourier coefficients every antenna will see, then apply the correct phase lags and multiply each pair of coefficients to simulate the process of correlation. We compute the projected UVW coordinates and put these along with the correlated visibilities into a CASA MS file. The correlated visibilities are compared to CASA's simulated visibilities at the same UVW coordinates, verifying the accuracy of our method. The visibilities are then subjected to realistic thermal noise, as well as phase noise from uncertainties in the spacecraft position. We employ CASA's CLEAN algorithm to image the data, and CASA's imfit algorithm to estimate the parameters of the imaged elliptical Gaussian, which we can compare directly to the input. We find that at the upper frequencies the phase noise can negatively affect performance of the array, but for the large majority of the tracking range of interest, SunRISE can sufficiently resolve the radio bursts to fulfill its science requirements and constrain Solar Energetic Particle acceleration and transport.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSH31A2721H
- Keywords:
-
- 2134 Interplanetary magnetic fields;
- INTERPLANETARY PHYSICS;
- 7514 Energetic particles;
- SOLAR PHYSICS;
- ASTROPHYSICS;
- AND ASTRONOMY;
- 7959 Models;
- SPACE WEATHER;
- 7984 Space radiation environment;
- SPACE WEATHER