Deriving and Constraining 3D CME Kinematic Parameters from Multi-Viewpoint Coronagraph Images
Abstract
Determining the 3D properties of a coronal mass ejection using multi-viewpoint coronagraph observations can be a tremendously complicated process. There are many factors that inhibit the ability to unambiguously identify the speed, direction and shape of a CME. These factors include the need to separate the "true" CME mass from shock-associated brightenings, distinguish between non-radial or deflected trajectories, and identify asymmetric CME structures. Additionally, different measurement methods can produce different results, sometimes with great variations. Part of the reason for the wide range of values that can be reported for a single CME is due to the difficulty in determining the CME's longitude since uncertainty in the angle of the CME relative to the observing image planes results in errors in the speed and topology of the CME. Often the errors quoted in an individual study are remarkably small when compared to the range of values that are reported by different authors for the same CME. For example, two authors may report speeds of 700 +- 50 km/sec and 500+-50 km/sec for the same CME. Clearly a better understanding of the accuracy of CME measurements, and an improved assessment of the limitations of the different methods, would be of benefit. We report on a survey of CME measurements, wherein we compare the values reported by different authors and catalogs. The survey will allow us to establish typical errors for the parameters that are commonly used as inputs for CME propagation models such as ENLIL and EUHFORIA. One way modelers handle inaccuracies in CME parameters is to use an ensemble of CMEs, sampled across ranges of latitude, longitude, speed and width. The CMEs simulated in order to determine the probability of a "direct hit" and, for the cases with a "hit," derive a range of possible arrival times. Our study will provide improved guidelines for generating CME ensembles that more accurately sample across the range of plausible values.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSH31A2714T
- Keywords:
-
- 2134 Interplanetary magnetic fields;
- INTERPLANETARY PHYSICS;
- 7514 Energetic particles;
- SOLAR PHYSICS;
- ASTROPHYSICS;
- AND ASTRONOMY;
- 7959 Models;
- SPACE WEATHER;
- 7984 Space radiation environment;
- SPACE WEATHER