The spatial gradients in the solar wind and IMF in the vicinity of the first Lagrangian point
Abstract
To verify the accuracy of predicted solar wind conditions at L1, we need to know how accurate our measurements are as well as the spatial gradients of solar wind properties since the data are not obtained precisely at the L1 point. With ACE, Wind, and DSCOVR currently taking measurements in the vicinity of L1, we first need to test whether their responses to the solar wind are the same and if not, to determine which data are most accurate. Secondly, we need to study the coherency scales of the solar wind properties, which determine the scale over which the measurements can be accurately extrapolated. By comparing the measurements during large solar wind structures (e.g. CMEs), we find that the magnetic fields from all spacecraft are measured accurately, but the plasma parameters can be significantly different from one spacecraft to another. By examining the sum of magnetic and plasma thermal pressure across tangential discontinuities, we find that the density and temperature measurements from Wind and DSCOVR do show pressure continuity as expected while ACE does not. Since plasma data from DSCOVR have a greater variability about the mean and have many data gaps, we believe that data from Wind should be used whenever available. We find that strength of the magnetic field and zero levels of the various magnetometers are consistent, but the direction of the magnetic field can change significantly in the cross-flow direction. Thus, over the separation distance of spacecraft near L1, large changes in the IMF direction can appear between spacecraft even though the IMF is accurately measured. In contrast, the plasma parameters, when measured accurately, are spatially uniform over about 100Re and may be extrapolated well. Our results can also be applied to improving future space weather mission design. A constellation of cubesats with magnetometers would be needed to determine the IMF impinging on the magnetosphere. Fewer plasma instruments are needed to determine the impinging solar wind conditions, but they should be more accurate than the current detectors.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSH31A2707L
- Keywords:
-
- 2134 Interplanetary magnetic fields;
- INTERPLANETARY PHYSICS;
- 7514 Energetic particles;
- SOLAR PHYSICS;
- ASTROPHYSICS;
- AND ASTRONOMY;
- 7959 Models;
- SPACE WEATHER;
- 7984 Space radiation environment;
- SPACE WEATHER