Correcting PSP electron measurements for the effects of spacecraft electrostatic and magnetic fields
Abstract
The near-Sun environment which the Parker Solar Probe will investigate presents a unique challenge for the measurement of thermal and suprathermal electrons. Over one orbital period, the ionizing photon flux and charged particle densities vary to such an extent that the spacecraft could charge to electrostatic potentials ranging from a few volts to tens of volts or more, and it may even develop negative electrostatic potentials near closest approach. In addition, significant permanent magnetic fields from spacecraft components will perturb thermal electron trajectories. Given these effects, electron distribution function (EDF) measurements made by the SWEAP/SPAN electron sensors will be significantly affected. It is thus important to try to understand the extent and nature of such effects, and to remediate them as much as possible. To this end, we have incorporated magnetic fields and a model electrostatic potential field into particle tracing simulations to predict particle trajectories through the near spacecraft environment. These simulations allow us to estimate how the solid angle elements measured by SPAN deflect and stretch in the presence of these fields and therefore how and to what extent EDF measurements will be distorted. In this work, we demonstrate how this technique can be used to produce a `dewarping' correction factor. Further, we show that this factor can correct synthetic datasets simulating the warped EDFs that the SPAN instruments are likely to measure over a wide range of spacecraft potentials and plasma Debye lengths.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSH23D2696M
- Keywords:
-
- 7509 Corona;
- SOLAR PHYSICS;
- ASTROPHYSICS;
- AND ASTRONOMY;
- 7513 Coronal mass ejections;
- SOLAR PHYSICS;
- ASTROPHYSICS;
- AND ASTRONOMY;
- 7514 Energetic particles;
- SOLAR PHYSICS;
- ASTROPHYSICS;
- AND ASTRONOMY;
- 7845 Particle acceleration;
- SPACE PLASMA PHYSICS