First-Principles Propagation of Geoelectric Fields from Ionosphere to Ground using LANLGeoRad
Abstract
A notable deficiency in the current SW forecasting chain is the propagation of geoelectric fields from ionosphere to ground using Biot-Savart integrals, which ignore the localized complexity of lithospheric electrical conductivity and the relatively high conductivity of ocean water compared to the lithosphere. Three-dimensional models of Earth conductivity with mesoscale spatial resolution are being developed, but a new approach is needed to incorporate this information into the SW forecast chain. We present initial results from a first-principles geoelectric propagation model call LANLGeoRad, which solves Maxwell's equations on an unstructured geodesic grid. Challenges associated with the disparate response times of millisecond electromagnetic propagation and 10-second geomagnetic fluctuations are highlighted, and a novel rescaling of the ionosphere/ground system is presented that renders this geoelectric system computationally tractable.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSH21A2629J
- Keywords:
-
- 4305 Space weather;
- NATURAL HAZARDS;
- 7594 Instruments and techniques;
- SOLAR PHYSICS;
- ASTROPHYSICS;
- AND ASTRONOMY;
- 7924 Forecasting;
- SPACE WEATHER;
- 7999 General or miscellaneous;
- SPACE WEATHER