A Plasma Trajectory Back-Tracing Tool Based on SuperDARN Convection Patterns
Abstract
Horizontal transport of plasma is one of the dominant factors in determining the distribution of plasma in the F-region ionosphere; this transport is driven by the magnetospheric convection electric field. When studying any electron density feature in the polar cap ionosphere, such as a density patch, TID, or tongue of ionization (TOI), one needs to know where that feature came from; was it generated by local production processes where it lies, or was it transported from another location? The path traveled by a plasma flux tube or plasma packet, which we call a trajectory, is determined by the time-varying convection electric field, and to whatever extent this electric field is known, one can back-trace the history of the plasma density feature in order to answer key questions about it, such as: Was this plasma exposed to sunlight in recent hours? Has this plasma packet passed through the auroral precipitation oval? Did it pass through the cusp? And since movement of a plasma flux tube toward the pole may cause upward ion drifts that result in density increases it is important to know whether the recent history of the density feature includes such convection toward (or away from) the pole.SuperDARN [Super Dual Auroral Radar Network] contains a data base of convection electric field patterns derived from ground station observations and the use of models to fill in gaps in the data. At Utah State University we have developed a software tool based on the SuperDARN convection patterns (which come at a time cadence of 2 minutes) to allow one to back-trace the history of polar cap plasma for an arbitrary length of time.The figure below shows a series of GPS TEC maps of the Northern Hemisphere in magnetic coordinates for 06 March 2016 in which a TOI feature forms at about 1700 UT. A series of locations, marked with X, are chosen such that they lie within the TOI at the time of the last panel (1730 UT); then, the plasma trajectory paths for these 15 locations are traced backward in time for 5 hours, and their locations are plotted on the TEC maps for universal times of 1230, 1330, 1430, 1530, and 1630.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSA51C2400D
- Keywords:
-
- 2407 Auroral ionosphere;
- IONOSPHERE;
- 2411 Electric fields;
- IONOSPHERE;
- 2427 Ionosphere/atmosphere interactions;
- IONOSPHERE;
- 2431 Ionosphere/magnetosphere interactions;
- IONOSPHERE