Thermally Excited 630.0 nm Emissions in the Polar Ionosphere
Abstract
The occurrence of thermally excited emissions in the polar ionosphere is studied based on EISCAT Svalbard radar measurements from the years 2000-2015. The peak occurrence is found around magnetic noon, where the radar observations show cusp-like characteristics. The ionospheric, interplanetary magnetic field and solar wind conditions favour dayside magnetic reconnection as the dominant driving process. The thermal emissions occur 10 times more frequently on the dayside than on the nightside, with an average intensity of 1-5 kR. For typical electron densities in the polar ionosphere (2x1011 m-3), we find the peak occurrence rate to occur for extreme electron temperatures (>3000 K), which is consistent with assumptions in literature. However, for extreme electron densities (>5x1011 m-3), we can now report on a completely new population of thermal emissions that may occur at much lower electron temperatures ( 2300 K). The empirical atmospheric model (NRLMSISE-00) suggests that the latter population is associated with enhanced neutral atomic oxygen densities.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSA41B2623K
- Keywords:
-
- 0358 Thermosphere: energy deposition;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 2437 Ionospheric dynamics;
- IONOSPHERE;
- 2706 Cusp;
- MAGNETOSPHERIC PHYSICS;
- 2736 Magnetosphere/ionosphere interactions;
- MAGNETOSPHERIC PHYSICS