Comparing Four Age Model Techniques using Nine Sediment Cores from the Iberian Margin
Abstract
Interpretations of paleoclimate records from ocean sediment cores rely on age models, which provide estimates of age as a function of core depth. Here we compare four methods used to generate age models for sediment cores for the past 140 kyr. The first method is based on radiocarbon dating using the Bayesian statistical software, Bacon [Blaauw and Christen, 2011]. The second method aligns benthic δ18O to a target core using the probabilistic alignment algorithm, HMM-Match, which also generates age uncertainty estimates [Lin et al., 2014]. The third and fourth methods are planktonic δ18O and sea surface temperature (SST) alignments to the same target core, using the alignment algorithm Match [Lisiecki and Lisiecki, 2002]. Unlike HMM-Match, Match requires parameter tuning and does not produce uncertainty estimates. The results of these four age model techniques are compared for nine high-resolution cores from the Iberian margin. The root mean square error between the individual age model results and each core's average estimated age is 1.4 kyr. Additionally, HMM-Match and Bacon age estimates agree to within uncertainty and have similar 95% confidence widths of 1-2 kyr for the highest resolution records. In one core, the planktonic and SST alignments did not fall within the 95% confidence intervals from HMM-Match. For this core, the surface proxy alignments likely produce more reliable results due to millennial-scale SST variability and the presence of several gaps in the benthic δ18O data. Similar studies of other oceanographic regions are needed to determine the spatial extents over which these climate proxies may be stratigraphically correlated.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMPP53A1113L
- Keywords:
-
- 1115 Radioisotope geochronology;
- GEOCHRONOLOGY;
- 1527 Paleomagnetism applied to geologic processes;
- GEOMAGNETISM AND PALEOMAGNETISM;
- 1535 Reversals: process;
- timescale;
- magnetostratigraphy;
- GEOMAGNETISM AND PALEOMAGNETISM;
- 4994 Instruments and techniques;
- PALEOCEANOGRAPHY