Reconstruction of the North Atlantic end-member of the Atlantic Meridional Overturning Circulation over glacial-interglacial cycles
Abstract
North Atlantic Deep Water (NADW) represents the major water mass that drives the Atlantic Meridional Ocean Circulation (AMOC), which undergoes substantial reorganization with changing climate. In order to understand its impact on ocean circulation and climate through time, it is necessary to constrain its composition. We report Nd isotope ratios of Fe-Mn oxide encrusted foraminifera and fish debris from DSDP Site 607 (41.00N 32.96W, 3427m), in the present-day core of NADW, and ODP 1063 (33.68N 57.62W, 4585m), on the deep abyssal plain at the interface between NADW and Antarctic Bottom Water. We provide a new North Atlantic paleocirculation record covering 2 Ma. At Site 607 interglacial ɛNd-values are consistently similar to present-day NADW (ɛNd -13.5), with median ɛNd-values of -14.3 in the Early Pleistocene and -13.8 in the Late Pleistocene. Glacial ɛNd-values are higher by 1 ɛNd-unit in the Early Pleistocene, and 1.5-2 ɛNd-units in the Late Pleistocene. Site 1063 shows much greater variability, with ɛNd ranging from -10 to -26. We interpret the North Atlantic AMOC source as represented by the Site 607 interglacial ɛNd-values, which has remained nearly stable throughout the entire period. The higher glacial ɛNd-values reflect incursions of some southern-sourced waters to Site 607, which is supported by coeval shifts to lower benthic foraminiferal d13C. In contrast, the Site 1063 ɛNd-values do not appear to reflect the AMOC end-member, and likely reflects local effects from a bottom source. A period of greatly disrupted ocean circulation marks 950-850 Ma, which may have been triggered by enhanced ice growth in the Northern Hemisphere that began around 1.2 Ma, as suggested by possible input events of Nd from the surrounding cratons into the North Atlantic observed in Site 607. Interglacial AMOC only recovers to the previously observed vigor over 200 ka following the disruption, whereas further intensified SSW incursion into the deep North Atlantic come to characterize the mid-late Pleistocene glacial intervals.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMPP51A1052K
- Keywords:
-
- 4914 Continental climate records;
- PALEOCEANOGRAPHY;
- 4928 Global climate models;
- PALEOCEANOGRAPHY;
- 4932 Ice cores;
- PALEOCEANOGRAPHY;
- 4936 Interglacial;
- PALEOCEANOGRAPHY