How to Make Eccentricity Cycles in Stratigraphy: the Role of Compaction
Abstract
Milankovitch cycles from astronomically driven climate variations have been demonstrated as preserved in cyclostratigraphy throughout geologic time. These stratigraphic cycles have been identified in many types of proxies, e.g., gamma ray, magnetic susceptibility, oxygen isotopes, carbonate content, grayscale, etc. However, the commonly prominent spectral power of orbital eccentricity cycles in stratigraphy is paradoxical to insolation, which is dominated by precession index power. How is the spectral power transferred from precession to eccentricity in stratigraphy? Nonlinear sedimentation and bioturbation have long been identified as players in this transference. Here, we propose that in the absence of bioturbation differential compaction can generate the transference. Using insolation time series, we trace the steps by which insolation is transformed into stratigraphy, and how differential compaction of lithology acts to transfer spectral power from precession to eccentricity. Differential compaction is applied to unique values of insolation, which is assumed to control the type of deposited sediment. High compaction is applied to muds, and progressively lower compaction is applied to silts and sands, or carbonate. Linear differential compaction promotes eccentricity spectral power, but nonlinear differential compaction elevates eccentricity spectral power to dominance and precession spectral power to near collapse as is often observed in real stratigraphy. Keywords: differential compaction, cyclostratigraphy, insolation, eccentricity
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMPP42B..02L
- Keywords:
-
- 4910 Astronomical forcing;
- PALEOCEANOGRAPHY;
- 4934 Insolation forcing;
- PALEOCEANOGRAPHY;
- 4946 Milankovitch theory;
- PALEOCEANOGRAPHY;
- 5450 Orbital and rotational dynamics;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS