Reconstructing Holocene Upwelling Conditions in Monterey Bay, California
Abstract
Upwelling along the eastern margin of the North Pacific is vital to the California Current System (CCS) and is a major contributing factor to the diverse marine ecosystems along the US West Coast. Prior studies hypothesize climate change will accelerate the alongshore equatorward winds that drive coastal upwelling, with the greatest increase in upwelling occurring within the poleward portion (N of 40°N) of the CCS. However, other studies have suggested that future upwelling changes in the southern portion (S of 35°N) of the CCS are less certain. Here we present a geological perspective into past Holocene upwelling along the central California coast from the Monterey Bay National Marine Sanctuary to provide a potential analogue for future upwelling conditions and a deeper understanding of CCS dynamics. A smear slide analysis of marine sediment cores taken from [1] the Pioneer Seamount off the Central California coast, [2] offshore of Pt. Año Nuevo, and [3] near the mouth of the Salinas River shows varying percentages of biogenic and terrigenous sediments during the past 11,000 years, with a shift toward greater biogenic silica sediments occurring approximately 3,000 cal yrs BP in the offshore site. In addition, an analysis of the diatom assemblages is used as a proxy for upwelling conditions. Preliminary results suggest a greater abundance of F. doliolus, a diatom species commonly used as a proxy for increased productivity and upwelling, occurs around 3,500 cal years BP. These results are then compared to existing calibrated X-ray computed tomography (CT) bulk density, total organic carbon (TOC), and biogenic silica (opal) measurements during periods of known climatic variability such as the Holocene Climate Optimum, Medieval Warm Period and Little Ice Age. Our results can provide a new high-resolution study of the central CCS throughout the Holocene, and give us a better understanding as to how future oceanic conditions may change the marine ecosystems along California's coast.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMPP41C1314O
- Keywords:
-
- 4845 Nutrients and nutrient cycling;
- OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL;
- 4912 Biogeochemical cycles;
- processes;
- and modeling;
- PALEOCEANOGRAPHY;
- 4928 Global climate models;
- PALEOCEANOGRAPHY;
- 4964 Upwelling;
- PALEOCEANOGRAPHY