Development of Simultaneous in situ Analysis of Carbon and Nitrogen Isotope Ratios in the Organic Matter by Secondary Ion Mass Spectrometry
Abstract
An in-situ analytical method for simultaneous analysis of carbon and nitrogen isotope ratios in organic matter was developed for 12 μm spots by secondary ion mass spectrometry (IMS 1280 at WiscSIMS). Secondary ions of 12C12C-, 12C13C-, 12C14N-, and 12C15N- are simultaneously measured by three Faraday cups and one electron multiplier. Ions of 12C12CH- are measured to monitor hydride interferences. The spot-by-spot reproducibility of δ13C and δ15N values of UWLA-1 anthracite standard (95.7 wt%C and 1.2 wt%N), which was selected as a running reference material, are 0.16‰ and 0.56‰ (2SD), respectively. A negative correlation is observed between the instrumental mass fractionation (mass bias) of carbon and 12C12CH-/12C12C- ratios of examined reference materials. In contrast, there is no correlation of mass bias and hydride cps for nitrogen isotope measurements, suggesting the mass bias of nitrogen can be determined independently of the hydrogen. Values of 22 individual globules of organic matter in a carbonate rock from the 1.9 Ga Gunflint Formation, determined by the new procedure, average δ13C = -33.5 ± 0.25‰ (VPDB) and δ15N = +5.2 ± 0.81‰ (Air). Values of δ13C of both SIMS and bulk kerogen analyses are consistent within analytical error. In contrast, a difference of 1.7‰, which is larger than the 2SD error of each analysis, is observed in δ15N values for in situ vs. bulk kerogen analyses (δ15Nbulk = +6.9 ± 0.6‰). This difference in δ15N might be caused by the preferential removal of low-δ15N components in the organic matter by HCl/HF acid treatment during the bulk kerogen isolation. Simultaneous analyses of carbon and nitrogen in the same micro-volume of organic matter in Precambrian sedimentary rocks will allow correlations with textures and mineralogical occurrences, which will provide more detailed constraints on environments and life of the early Earth. Furthermore, this method is applicable to a wide variety of other research fields, including nutrient distributions in the microstructure of plants and animals, heterogeneous isotope distributions of organic matter in meteorites, maturity of coal, and genesis of diamonds, leading us to understand the evolution of the Earth system.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMPP41B1293I
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 0473 Paleoclimatology and paleoceanography;
- BIOGEOSCIENCES;
- 1030 Geochemical cycles;
- GEOCHEMISTRY;
- 5225 Early environment of Earth;
- PLANETARY SCIENCES: ASTROBIOLOGY