Reconstructing Southern Greenland Ice Sheet History During the Plio-Pleistocene Intensification of Northern Hemisphere Glaciation: Insights from IODP Site U1307
Abstract
Should it melt entirely, the Greenland Ice Sheet (GrIS) has the potential to raise global sea-level by 7 metres. With the Arctic continuing to warm at a remarkable rate, to better understand how the GrIS will respond to future anthropogenically-induced climate change we must constrain its natural variability in the geological past. In this regard, much uncertainty exists surrounding its pre-Quaternary history; particularly during the mid-Piacenzian warm period (mPWP; 3.3-3.0 Ma) - widely considered an analogue for near-future equilibrium climate with modern atmospheric CO2 levels and elevated temperatures relative to today - and the late Pliocene/early Pleistocene onset of widespread Northern Hemisphere glaciation (NHG, 2.7 Ma). GrIS reconstructions for these intervals have been largely hampered by a lack of well-dated, high-resolution records from suitable sites. To address this, we present new high-resolution, multi-proxy records from IODP Site U1307, a North Atlantic marine sediment core recovered from the Eirik Drift just south of Greenland. Generation of a new high-resolution relative palaeointensity (RPI)-based age-model - representing the first of its kind for high-latitude sediments deposited during NHG - has enabled strong orbital age control. Our ice-rafted debris (IRD) record confirms a 2.72 Ma initiation of major southern GrIS marine-terminating glaciations, which appear to persist even through interglacial periods up to at least 2.24 Ma. XRF-scanning and IRD evidence suggests, however, that an ephemeral ice-cap of likely considerable size persisted on southern Greenland prior to the mPWP. These data, together with the analysed provenance of individual IRD, indicate marine-based GrIS margins extended southward over the NHG interval and only occurred on Greenland's southern tip from 2.7 Ma. Despite a large increase in the deposition of GrIS-derived IRD from this time, bulk sedimentation rates and magnetic grain-size dropped significantly, implying that the onset of NHG 2.7 Ma was associated with a change in the strength and/or depth of the Western Boundary Undercurrent at the site. IODP Site U1307 therefore provides a unique opportunity to constrain southern GrIS behaviour and deep-ocean response during these key climatic intervals, lending valuable lessons to future predictions.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMPP31C1290B
- Keywords:
-
- 9315 Arctic region;
- GEOGRAPHIC LOCATION;
- 4914 Continental climate records;
- PALEOCEANOGRAPHY;
- 4928 Global climate models;
- PALEOCEANOGRAPHY;
- 4999 General or miscellaneous;
- PALEOCEANOGRAPHY