Mono Lake sediments preserve a record of recent environmental change
Abstract
Modern Mono Lake is a geochemically unique closed-basin, hypersaline soda lake. Since 1941, anthropogenic water diversions have decreased the lake's volume and water level, driving changes in water chemistry and ecology. Mono Lake sediments offer an opportunity to investigate the nature and extent of these changes. We analyzed a 70 cm sediment core from the center of Mono Lake recording the past 116 years of deposition. At the time of recovery, the entire core was dark green. 16S rRNA gene analysis indicated a sedimentary bacterial community dominated by Cyanobacteria. SEM imaging revealed abundant, well-preserved diatom frustules below 10 cm core depth, in contrast they are nearly absent above 10 cm depth. Fatty acid (FAME) biomarkers for diatoms and algal sterols were present throughout the core in varying concentrations. Phytol was exceptionally abundant in the core; ratios of phytol/C-18 FAME were commonly >200. The δ13Corg ranged between -17.5 and -20‰ in the lower 52 cm of the core while the upper part shows significant decrease of δ13Corg to -28‰. We interpret the shift in δ13Corg as an ecological transition from mainly diatoms in the lower core towards the green alga Picocystis, which is the main primary producer today and has a δ13Corg value of -32.5‰. The onset of this change dates back 23 years, which roughly coincides with the highest reported salinity, 88 g/L in 1995. We hypothesize that diatoms gradually became marginalized as a result of hypersaline conditions. We also observed a variety of trends that may be characterized as unique fingerprints of Mono Lake. The unusually high abundance of phytol was consistent with the core's pervasive green coloring and could potentially indicate a higher preservation potential of phytol under alkaline conditions. Throughout the core, δ15Norg fluctuated between +10 and +13‰. Such atypical enrichment in δ15Norg could be explained by NH4 dissociation and subsequent NH3 volatilization under high pH conditions. This process could help elucidate the previously reported dearth of bioavailable nitrogen in Mono Lake. We conclude that the unique chemistry allows the Mono Lake sediments to preserve both a record of environmental change and characteristic fingerprints that could be used to identify similar lake systems in the rock record.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMPP31B1274M
- Keywords:
-
- 4914 Continental climate records;
- PALEOCEANOGRAPHY;
- 4942 Limnology;
- PALEOCEANOGRAPHY;
- 4944 Micropaleontology;
- PALEOCEANOGRAPHY;
- 4952 Palynology;
- PALEOCEANOGRAPHY