Danube paleohydrology: Hyperspectral and sedimentological high-resultion study of the last glacial Black Sea rythmites
Abstract
The Black Sea has undergone alternating phases of lacustrine and marine environment over geological timescales directly related to its semi-enclosed character and to eustatic sea-level oscillations. During lowstand conditions, as during the last glacial period, the Black Sea was a giant lake disconnected from the global ocean. At that time, Black Sea water-level was controlled by regional climate, and by Eurasian rivers, including the Danube that acted as an outlet of European Ice Sheet and the Alpine ice cap. Thus, the paleo-mouth of the Danube river contains a high quality archive for the study of the paleohydrology of the Danube River and by extension of the European climate changes during the last 30 kyr. For this purpose, we have focused on the GAS-CS01 calypso long-piston core (33.4 m) which was taken during GHASS cruise (Ifremer, 2015) on the upper slope (240 m. depth) at about 25 km east of the Danube Canyon, i.e. in the sediment pile of the Danube paleo-mouth during the last glacial period. Our chronology reveals that core GAS-CS01 extends back to 31 cal kyr BP. The lithology of GAS-CS01 is characterized by clastic rythmites which are presented as a high-resolution Danube runoff proxy. Preliminary results of sedimentological and chronological analysis showed five peaks of terrestrial discharges between ca 31 and 14 ka BP, probably linked to five phases of the enhanced runoff during the studied period. In order to understand the origin and the depositional processes of this laminae, we combined sedimentary analysis (x-ray diffraction, x-ray fluorescence, grain size ...) and hyperspectral images analysis. Hyperspectral imagery is a non-destructive fast method classically used to quantify colour and provides data with high spatial (57-µm pixel size) and spectral (3 nm) resolution. The multi-proxy calibration is essential in order to obtain a high-resolution sedimentological dataset. This information allows us to reconstruct the nature and depositional process of the rythmites and thus decipher the Danube paleohydrology during the last 30 kyr.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMPP11C1043M
- Keywords:
-
- 3305 Climate change and variability;
- ATMOSPHERIC PROCESSES;
- 3309 Climatology;
- ATMOSPHERIC PROCESSES;
- 3344 Paleoclimatology;
- ATMOSPHERIC PROCESSES;
- 1833 Hydroclimatology;
- HYDROLOGY