New watershed-based climate forecast products for hydrologists and water managers
Abstract
Operational sub-seasonal to seasonal (S2S) climate predictions have advanced in skill in recent years but are yet to be broadly utilized by stakeholders in the water management sector. While some of the challenges that relate to fundamental predictability are difficult or impossible to surmount, other hurdles related to forecast product formulation, translation, relevance, and accessibility can be directly addressed. These include products being misaligned with users' space-time needs, products disseminated in formats users cannot easily process, and products based on raw model outputs that are biased relative to user climatologies. In each of these areas, more can be done to bridge the gap by enhancing the usability, quality, and relevance of water-oriented predictions. In addition, water stakeholder impacts can benefit from short-range extremes predictions (such as 2-3 day storms or 1-week heat waves) at S2S time-scales, for which few products exist. We present interim results of a Research to Operations (R2O) effort sponsored by the NOAA MAPP Climate Testbed to (1) formulate climate prediction products so as to reduce hurdles to in water stakeholder adoption, and to (2) explore opportunities for extremes prediction at S2S time scales. The project is currently using CFSv2 and National Multi-Model Ensemble (NMME) reforecasts and forecasts to develop real-time watershed-based climate forecast products, and to train post-processing approaches to enhance the skill and reliability of raw real-time S2S forecasts. Prototype S2S climate data products (forecasts and associated skill analyses) are now being operationally staged at NCAR on a public website to facilitate further product development through interactions with water managers. Initial demonstration products include CFSv2-based bi-weekly climate forecasts (weeks 1-2, 2-3, and 3-4) for sub-regional scale hydrologic units, and NMME-based monthly and seasonal prediction products. Raw model mean skill at these time-space resolutions for some periods (e.g., weeks 3-4) is unusably low, but for other periods, and for multi-month leads with NMME, precipitation and particularly temperature forecasts exhibit useful skill. Website: http://hydro.rap.ucar.edu/s2s/
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMPA11B0213B
- Keywords:
-
- 1812 Drought;
- HYDROLOGY;
- 1884 Water supply;
- HYDROLOGY;
- 4341 Early warning systems;
- NATURAL HAZARDS;
- 4343 Preparedness and planning;
- NATURAL HAZARDS