A SIMS Study of Sulfur Isotopes of Accessory Pyrites Associated with Barites from Methane Cold Seeps in the Gulf of Mexico
Abstract
Bacteria and archaea associated with seeps can fix methane from sublimating gas hydrates through coupled bacterial sulfate reduction/ anaerobic methane oxidation (BSR/AMO) and prevent outgassing to the atmosphere. The occurrence of such microbial processes has been established on the basis of the sulfur isotope compositions of microbial byproducts (pyrites; FeS2) that reflect the degree of fractionation between SO4 and FeS2 via the production of the H2S intermediate phase. BSR/AMO coupling has been discerned in accessory sulfides associated with carbonates from gas hydrate sites. Whether BSR/AMO coupling is also active in barites, another ubiquitous product of gas hydrate sublimation, has so far been overlooked. Here we present results of a new sulfur isotope study of accessory sulfides in barites associated with gas hydrates at the threshold of stability occurring on the Gulf of Mexico slope. Using a fractionation factor of 1.009 and a seawater δ34SSO4 value of 20.3‰ and assuming a Rayleigh distillation closed system model for marine sulfide precipitation, pyrites from barite gas seeps are predicted to exhibit a range of δ34S values (about -1‰ to 20‰ CDT) as the pool of sulfate is continuously depleted. Actual δ34S values could fall outside of the predicted range because the system in question is likely only partially closed and kinetic fractionations are likely. δ34S of accessory pyrites from three Garden Banks Lease Block 382 (510 - 640m water depth) and one Mississippi Canyon Lease Block 929 (590m) barite samples have been determined using an ims-1290 Secondary Ion Mass Spectrometer (SIMS). Two Garden Banks samples and one Mississippi Canyon sample reveal a spread of values from 5.30 ± 0.04 to 25.90 ± 0.09 (‰ CDT), which follow the predicted trend for gas seeps and indicate the source of fractionation is likely from the coupled BSR/AMO process. One Garden Banks sample yields a wide spread of values from -26.2 ± 0.05 to 20.5 ± 0.4 (‰ CDT). The negative values are unexpected because such values typically suggest a sole contribution by BSR. This sample was the youngest (12.8 ± 0.6 yrs versus 21.5 ± 1.9 to 44.23 ± 2.92 yrs) at time of collection, and thus some of the negative values could reflect kinetic effects governed by the BSR pathway or anaerobic bacterial disproportionation (BDS) of elemental sulfur.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMOS53C1223M
- Keywords:
-
- 3004 Gas and hydrate systems;
- MARINE GEOLOGY AND GEOPHYSICS;
- 4805 Biogeochemical cycles;
- processes;
- and modeling;
- OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL;
- 4815 Ecosystems;
- structure;
- dynamics;
- and modeling;
- OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL;
- 4219 Continental shelf and slope processes;
- OCEANOGRAPHY: GENERAL