Structural Imaging around the SMS Deposit by the Multi-Source ZVCS Survey Method in the Izena Hole, Mid-Okinawa Trough
Abstract
Seafloor Massive Sulfide (SMS) deposits typically show rugged topography such as abundant chimney structures and sulfide mounds. However, buried SMS deposits are not well studied because of few efficient methods to detect and characterize them. Therefore, we proposed a Zero-offset Vertical Cable Seismic (ZVCS) survey using a Sparker and a Remotely Operated Vehicle (ROV) which was equipped with autonomous hydrophone arrays and a sub-bottom profiler (SBP). Zero-offset shooting and near-bottom recording can acquire high resolution acoustic data that could separate the reflection and scattered wave by vertically towed hydrophone arrays. We conducted the multi-source ZVCS survey in the Hakurei site, where the existence of the exposed and the buried SMS deposits has been reported, in Izena Hole, the Mid-Okinawa Trough, during the exploration cruise JM16-04. We obtained the two source's cross-sections of the buried SMS that enabled us to identify the area from the viewpoint of seismic facies. Buried SMS area is characterized by wavy to subparallel internal configuration and semi-continuously reflections. These features suggest that results from collapse of original sedimentary structure and hydrothermal alteration. Previous our exploration of the entire Izena Hole by the Autonomous Cable Seismic (ACS) were conducted in the JM16-02. Comparison between the ZVCS and ACS results gave us not only structural features in the surrounding area of SMS, but also the hydrothermal system of the Izena Hole. These results suggest that the hydrothermal circulation in the Izena Hole is vertically limited to the fracture zone caused by the depression and the buried SMS occurs in a sedimentary layer in the fracture zone. We conclude that ZVCS and ACS imaging of the shallow sub-seafloor structures will be useful for discussion about the geological background of SMS deposits.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMOS53A1170T
- Keywords:
-
- 8104 Continental margins: convergent;
- TECTONOPHYSICS;
- 8170 Subduction zone processes;
- TECTONOPHYSICS;
- 8413 Subduction zone processes;
- VOLCANOLOGY