Conversion of the magnetic field measured in three components on the magnetic sensor body's random coordinate system into three components on geographical coordinate system through quaternion rotation.
Abstract
To measure all components of a physical property, for example the magnetic field, is more useful than to measure its magnitude only in interpretation and application thereafter. To convert the physical property measured in 3 components on a random coordinate system, for example on moving magnetic sensor body's coordinate system, into 3 components on a fixed coordinate system, for example on geographical coordinate system, by the rotations of coordinate system around Euler angles for example, we should have the attitude values of the sensor body in time series, which could be acquired by an INS-GNSS system of which the axes are installed coincident with those of the sensor body. But if we want to install some magnetic sensors in array at sea floor but without attitude acquisition facility of the magnetic sensors and to monitor the variation of magnetic fields in time, we should have also some way to estimate the relation between the geographical coordinate system and each sensor body's coordinate system by comparison of the vectors only measured on both coordinate systems on the assumption that the directions of the measured magnetic field on both coordinate systems are the same. For that estimation, we have at least 3 ways. The first one is to calculate 3 Euler angles phi, theta, psi from the equation Vgeograph = Rx(phi) Ry(theta) Rz(psi) Vrandom, where Vgeograph is the vector on geographical coordinate system etc. and Rx(phi) is the rotation matrix around the x axis by the angle phi etc. The second one is to calculate the difference of inclination and declination between the 2 vectors on spherical coordinate system. The third one, used by us for this study, is to calculate the angle of rotation along a great circle around the rotation axis, and the direction of the rotation axis. We installed no. 1 and no. 2 FVM-400 fluxgate magnetometers in array near Cheongyang Geomagnetic Observatory (IAGA code CYG) and acquired time series of magnetic fields for CYG and for the two magnetometers. Once the angle of rotation and the direction of the rotation axis for each couple of CYG and no. 1 and of CYG and no. 2 estimated, we rotated the measured time series of vectors using quaternion rotation to get 3 time series of magnetic fields all on geographical coordinate system, which were used for tracing the moving magnetic bodies along time in that area.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMNS33A0036L
- Keywords:
-
- 0920 Gravity methods;
- EXPLORATION GEOPHYSICS;
- 0925 Magnetic and electrical methods;
- EXPLORATION GEOPHYSICS;
- 0935 Seismic methods;
- EXPLORATION GEOPHYSICS;
- 0999 General or miscellaneous;
- EXPLORATION GEOPHYSICS