Complex landslides in the Trans-Mexican Volcanic Belt - a case study in the State of Veracruz
Abstract
The State of Veracruz (Mexico) is a region which is highly affected by landslides, therefore detailed studies on triggering factors and process dynamics of landslides are required. Profound insights are essential for further hazard assessments and compilation of susceptibility maps. Exemplary landslide sites were investigated in order to determine characteristic features of specific regions. In the Chiconquiaco Mountain Range numerous damaging landslide events occurred in the year of 2013 and our case study corresponds to a deep-seated landslide originating from this slide-intensive year. The main scientific aspects are placed on the reconstruction of the landslides geometry and its process dynamics. Therefore, surface and subsurface analysis form the base of a multimethodological approach. In order to perform surface analysis, aerial photographs were collected by an unmanned aerial vehicle (UAV) aiming at the generation of a 3D model with the Structure from Motion (SfM) work routine. Ground control points (GCP) were used to ensure the geometric accuracy of the model. The obtained DEM of the 2013 slide mass as well as an elevation model representing the topographic situation before the event (year 2011) were used to detect surface changes. The data enabled determination of the most affected areas as well as areas characterized by secondary movements. Furthermore, the volume of the slide mass could be calculated. Geophysical methods, as electrical resistivity tomography (ERT) as well as seismic refraction tomography (SRT), were applied for subsurface analysis. Differences in subsurface composition, respectively density, allowed for separation of the slide mass and the underlying unit. Most relevant for our studies is the detection of an earlier landslide leading to the assumption that the 2013 landslide event corresponds to a reactivation process. This multimethodological approach enables a far-reaching visualization of complex landslides and strongly supports the reconstruction of interior structures and process dynamics.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMNH43A0179W
- Keywords:
-
- 1826 Geomorphology: hillslope;
- HYDROLOGY;
- 4319 Spatial modeling;
- NATURAL HAZARDS;
- 4333 Disaster risk analysis and assessment;
- NATURAL HAZARDS;
- 4337 Remote sensing and disasters;
- NATURAL HAZARDS