Estimation of the Characterized Tsunami Source Model considering the Complicated Shape of Tsunami Source by Using the observed waveforms of GPS Buoys in the Nankai Trough
Abstract
In the 2011 Tohoku earthquake tsunami disaster, the delay of understanding damage situation increased the human damage. To solve this problem, it is important to search the severe damaged areas. The tsunami numerical modeling is useful to estimate damages and the accuracy of simulation depends on the tsunami source. Seto and Takahashi (2017) proposed a method to estimate the characterized tsunami source model by using the limited observed data of GPS buoys. The model consists of Large slip zone (LSZ), Super large slip zone (SLSZ) and background rupture zone (BZ) as the Cabinet Office, Government of Japan (below COGJ) reported after the Tohoku tsunami. At the beginning of this method, the rectangular fault model is assumed based on the seismic magnitude and hypocenter reported right after an earthquake. By using the fault model, tsunami propagation is simulated numerically, and the fault model is improved after comparing the computed data with the observed data repeatedly. In the comparison, correlation coefficient and regression coefficient are used as indexes. They are calculated with the observed and the computed tsunami wave profiles. This repetition is conducted to get the two coefficients close to 1.0, which makes the precise of the fault model higher. However, it was indicated as the improvement that the model did not examine a complicated shape of tsunami source. In this study, we proposed an improved model to examine the complicated shape. COGJ(2012) assumed that possible tsunami source region in the Nankai trough consisted of the several thousands small faults. And, we use these small faults to estimate the targeted tsunami source in this model. Therefore, we can estimate the complicated tsunami source by using these small faults. The estimation of BZ is carried out as a first step, and LSZ and SLSZ are estimated next as same as the previous model. The proposed model by using GPS buoy was applied for a tsunami scenario in the Nankai Trough. As a result, the final estimated location of LSZ and SLSZ in BZ are estimated well.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMNH23A0203S
- Keywords:
-
- 3225 Numerical approximations and analysis;
- MATHEMATICAL GEOPHYSICS;
- 4332 Disaster resilience;
- NATURAL HAZARDS;
- 4341 Early warning systems;
- NATURAL HAZARDS;
- 4564 Tsunamis and storm surges;
- OCEANOGRAPHY: PHYSICAL