An Uncertainty Quantification Framework for Remote Sensing Retrievals
Abstract
Remote sensing data sets produced by NASA and other space agencies are the result of complex algorithms that infer geophysical state from observed radiances using retrieval algorithms. The processing must keep up with the downlinked data flow, and this necessitates computational compromises that affect the accuracies of retrieved estimates. The algorithms are also limited by imperfect knowledge of physics and of ancillary inputs that are required. All of this contributes to uncertainties that are generally not rigorously quantified by stepping outside the assumptions that underlie the retrieval methodology. In this talk we discuss a practical framework for uncertainty quantification that can be applied to a variety of remote sensing retrieval algorithms. Ours is a statistical approach that uses Monte Carlo simulation to approximate the sampling distribution of the retrieved estimates. We will discuss the strengths and weaknesses of this approach, and provide a case-study example from the Orbiting Carbon Observatory 2 mission.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMNG23A..01B
- Keywords:
-
- 3315 Data assimilation;
- ATMOSPHERIC PROCESSES;
- 1910 Data assimilation;
- integration and fusion;
- INFORMATICS;
- 3260 Inverse theory;
- MATHEMATICAL GEOPHYSICS;
- 4468 Probability distributions;
- heavy and fat-tailed;
- NONLINEAR GEOPHYSICS