Cristobalite X-I: A bridge between low and high density silica polymorphs
Abstract
SiO2 is one of the most common compounds found on Earth. Despite its chemical simplicity, and because of its crystal chemical characteristics, SiO2 exhibits a complex phase diagram. SiO2 has a wide variety of thermodynamically stable crystalline phases, as well as numerous metastable crystalline and amorphous polymorphs. Many of the phase transition sequences that produce metastable phases of SiO2 are strongly path-dependent, where the rate of change controls the transition just as much as the final conditions. The elusive metastable polymorphs of SiO2 may provide a better understanding of the factors controlling its densification. On compression of α-cristobalite (the high temperature tetrahedral phase of SiO2) to pressures above 12 GPa, a new polymorph known as cristobalite X-I forms. Existence of cristobalite X-I has been known for several decades, however, consensus regarding the exact atomic arrangement has not yet been reached. The X-I phase constitutes an important step in the silica densification process, separating low-density tetrahedral framework structures from high-density octahedral polymorphs. It is unique in being the only non-quenchable high-density SiO2 phase, which reverts back to the tetrahedral low-density form on decompression at ambient temperature. Our new single crystal synchrotron X-ray diffraction experiments, with quasihydrostatic neon as the pressure medium, revealed the structure of this enigmatic phase to consist of octahedral silicate chains with 4-60°-2 zigzag chain geometry. This geometry has not been considered before, but is closely related to post-quartz, stishovite and seifertite. Density functional theory calculations support this observation, confirming the dynamic stability of the X-I arrangement and reasonably reproducing the pressure at which the transformation takes place. The enthalpy of cristobalite X-I is higher than stishovite and seifertite, but it is favored as a high-pressure successor of cristobalite due to a unique transformation pathway.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMMR43C0481S
- Keywords:
-
- 3902 Creep and deformation;
- MINERAL PHYSICS;
- 3909 Elasticity and anelasticity;
- MINERAL PHYSICS;
- 3919 Equations of state;
- MINERAL PHYSICS;
- 3924 High-pressure behavior;
- MINERAL PHYSICS