Comparing crack damage evolution in rocks deformed under conventional and true triaxial loading
Abstract
The vast majority of experimental studies investigate damage evolution using conventional triaxial stress states (σ1 > σ2 = σ3, CTA), whereas in nature the stress state is generally truly triaxial (σ1 > σ2 > σ3, TTA). We present a comparative study of crack damage evolution during CTA vs. TTA stress conditions using results from measurements made on cubic samples of sandstone deformed in three orthogonal directions with independently controlled stress paths. We have measured, simultaneously with stress and strain, changes in wave velocities in the three principal directions, together with acoustic emission (AE) output. Changes in wave velocities are associated with both elastic closure and opening of pre-existing cracks, and the inelastic formation of new cracks. By contrast, AE is associated only with the inelastic growth of new crack damage. The onset of new damage is shown to be a function of differential stress regardless of the magnitude of mean stress. Hence, we show that damage can form due to a decrease in the minimum principal stress, which reduces mean stress but increases the differential stress. We find an approximately fivefold decrease in the number of AE events in the TTA case in comparison to the CTA case. In essence, we create two end-member crack distributions; one displaying cylindrical transverse isotropy and the other planar transverse isotropy. Taken together, the AE data, the velocities and the crack densities indicate that the intermediate principal stress plays a key role in suppressing the total amount of crack growth and concentrating it in planes sub-parallel to the minimum stress. However, the size of individual cracks remains constant. Hence, the differential stress at which rocks fail (i.e. strength) will be significantly higher under TTA stress (where σ2 > σ3) than under CTA stress (where σ2 = σ3). Cyclic loading tests show that while individual stress states are important, the stress path by which these stress states are reached is equally important. Whether the stress state has been `visited' before is key to determining and understanding damage states. Further damage commences only when the previous maximum differential stress is exceeded, regardless of whether this is achieved by increasing the maximum principal stress or by decreasing the minimum principal stress.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMMR33B0466B
- Keywords:
-
- 5199 General or miscellaneous;
- PHYSICAL PROPERTIES OF ROCKS;
- 8012 High strain deformation zones;
- STRUCTURAL GEOLOGY;
- 8118 Dynamics and mechanics of faulting;
- TECTONOPHYSICS;
- 8163 Rheology and friction of fault zones;
- TECTONOPHYSICS