A Fractal Study on the Effective Thermal Conductivity of Porous Media
Abstract
Thermal conduction in porous media has steadily received attention in science and engineering, for instance, exploiting and utilizing the geothermal energy, developing the oil-gas resource, ground water flow in hydrothermal systems and investigating the potential host nuclear wastes, etc. The thermal conductivity is strongly influenced by the microstructure features of porous media. In this work, based on the fractal characteristics of the grains, a theoretical model of effective thermal conductivity is proposed for saturated and unsaturated porous media. It is found that the proposed effective thermal conductivity solution is a function of geometrical parameters of porous media, such as the porosity, fractal dimension of granular matrix and the thermal conductivity of the grains and pore fluid. The model predictions are compared with existing experimental data and the results show that they are in good agreement with existing experimental data. The proposed model may provide a better understanding of the physical mechanisms of thermal transfer in porous media than conventional models.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMMR11A0291Q
- Keywords:
-
- 1859 Rocks: physical properties;
- HYDROLOGY;
- 4440 Fractals and multifractals;
- NONLINEAR GEOPHYSICS;
- 5104 Fracture and flow;
- PHYSICAL PROPERTIES OF ROCKS;
- 5112 Microstructure;
- PHYSICAL PROPERTIES OF ROCKS