Recommended GIS Analysis Methods for Global Gridded Population Data
Abstract
When using geographic information systems (GIS) to analyze gridded, i.e., raster, population data, analysts need a detailed understanding of several factors that affect raster data processing, and thus, the accuracy of the results. Global raster data is most often provided in an unprojected state, usually in the WGS 1984 geographic coordinate system. Most GIS functions and tools evaluate data based on overlay relationships (area) or proximity (distance). Area and distance for global raster data can be either calculated directly using the various earth ellipsoids or after transforming the data to equal-area/equidistant projected coordinate systems to analyze all locations equally. However, unlike when projecting vector data, not all projected coordinate systems can support such analyses equally, and the process of transforming raster data from one coordinate space to another often results unmanaged loss of data through a process called resampling. Resampling determines which values to use in the result dataset given an imperfect locational match in the input dataset(s). Cell size or resolution, registration, resampling method, statistical type, and whether the raster represents continuous or discreet information potentially influence the quality of the result. Gridded population data represent estimates of population in each raster cell, and this presentation will provide guidelines for accurately transforming population rasters for analysis in GIS. Resampling impacts the display of high resolution global gridded population data, and we will discuss how to properly handle pyramid creation using the Aggregate tool with the sum option to create overviews for mosaic datasets.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMIN51H..03F
- Keywords:
-
- 1640 Remote sensing;
- GLOBAL CHANGE;
- 1910 Data assimilation;
- integration and fusion;
- INFORMATICS;
- 1980 Spatial analysis and representation;
- INFORMATICS;
- 4323 Human impact;
- NATURAL HAZARDS