Tracking Research Data Footprints via Integration with Research Graph
Abstract
The researcher of today is likely to be part of a team that will use subsets of data from at least one, if not more external repositories, and that same data could be used by multiple researchers for many different purposes. At best, the repositories that host this data will know who is accessing their data, but rarely what they are using it for, resulting in funders of data collecting programs and data repositories that store the data unlikely to know: 1) which research funding contributed to the collection and preservation of a dataset, and 2) which data contributed to high impact research and publications. In days of funding shortages there is a growing need to be able to trace the footprint a data set from the originator that collected the data to the repository that stores the data and ultimately to any derived publications. The Research Data Alliance's Data Description Registry Interoperability Working Group (DDRIWG) has addressed this problem through the development of a distributed graph, called Research Graph that can map each piece of the research interaction puzzle by building aggregated graphs. It can connect datasets on the basis of co-authorship or other collaboration models such as joint funding and grants and can connect research datasets, publications, grants and researcher profiles across research repositories and infrastructures such as DataCite and ORCID. National Computational Infrastructure (NCI) in Australia is one of the early adopters of Research Graph. The graphic view and quantitative analysis helps NCI track the usage of their National reference data collections thus quantifying the role that these NCI-hosted data assets play within the funding-researcher-data-publication-cycle. The graph can unlock the complex interactions of the research projects by tracking the contribution of datasets, the various funding bodies and the downstream data users. RMap Project is a similar initiative which aims to solve complex relationships among scholarly publications and their underlying data, including IEEE publications. It is hoped to combine RMap and Research Graph in the near futures and also to add physical samples to Research Graph.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMIN33B0111E
- Keywords:
-
- 1916 Data and information discovery;
- INFORMATICS;
- 1930 Data and information governance;
- INFORMATICS;
- 1970 Semantic web and semantic integration;
- INFORMATICS;
- 1986 Statistical methods: Inferential;
- INFORMATICS