Bringing MapReduce Closer To Data With Active Drives
Abstract
Moving computation closer to the data location has been a much theorized improvement to computation for decades. The increase in processor performance, the decrease in processor size and power requirement combined with the increase in data intensive computing has created a push to move computation as close to data as possible. We will show the next logical step in this evolution in computing: moving computation directly to storage. Hypothetical systems, known as Active Drives, have been proposed as early as 1998. These Active Drives would have a general-purpose CPU on each disk allowing for computations to be performed on them without the need to transfer the data to the computer over the system bus or via a network. We will utilize Seagate's Active Drives to perform general purpose parallel computing using the MapReduce programming model directly on each drive. We will detail how the MapReduce programming model can be adapted to the Active Drive compute model to perform general purpose computing with comparable results to traditional MapReduce computations performed via Hadoop. We will show how an Active Drive based approach significantly reduces the amount of data leaving the drive when performing several common algorithms: subsetting and gridding. We will show that an Active Drive based design significantly improves data transfer speeds into and out of drives compared to Hadoop's HDFS while at the same time keeping comparable compute speeds as Hadoop.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMIN21D0059G
- Keywords:
-
- 1626 Global climate models;
- GLOBAL CHANGE;
- 1920 Emerging informatics technologies;
- INFORMATICS;
- 1932 High-performance computing;
- INFORMATICS;
- 1994 Visualization and portrayal;
- INFORMATICS