Deep learning for the detection of barchan dunes in satellite images
Abstract
Barchan dunes are known to be the fastest moving sand dunes in deserts as they form under unidirectional winds and limited sand supply over a firm coherent basement (Elbelrhiti and Hargitai,2015). They were studied in the context of natural hazard monitoring as they could be a threat to human activities and infrastructures. Also, they were studied as a natural phenomenon occurring in other planetary landforms such as Mars or Venus (Bourke et al., 2010). Our region of interest was located in a desert region in the south of Morocco, in a barchan dunes corridor next to the town of Tarfaya. This region which is part of the Sahara desert contained thousands of barchans; which limits the number of dunes that could be studied during field missions. Therefore, we chose to monitor barchan dunes with satellite imagery, which can be seen as a complementary approach to field missions. We collected data from the Sentinel platform (https://scihub.copernicus.eu/dhus/); we used a machine learning method as a basis for the detection of barchan dunes positions in the satellite image. We trained a deep learning model on a mid-sized dataset that contained blocks representing images of barchan dunes, and images of other desert features, that we collected by cropping and annotating the source image. During testing, we browsed the satellite image with a gliding window that evaluated each block, and then produced a probability map. Finally, a threshold on the latter map exposed the location of barchan dunes. We used a subsample of data to train the model and we gradually incremented the size of the training set to get finer results and avoid over fitting. The positions of barchan dunes were successfully detected and deep learning was an effective method for this application. Sentinel-2 images were chosen for their availability and good temporal resolution, which will allow the tracking of barchan dunes in future work. While Sentinel images had sufficient spatial resolution for the detection of mid-size to large size barchans, we noted that it was relatively difficult to detect smaller barchan dunes. Overall, deep learning allowed us to achieve a high accuracy in the detection of barchan dunes. The tracking of hundreds of barchans using this detection method would provide an insight into the understanding of the dynamics of this natural phenomenon.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMIN13B0068A
- Keywords:
-
- 1914 Data mining;
- INFORMATICS;
- 1916 Data and information discovery;
- INFORMATICS;
- 1942 Machine learning;
- INFORMATICS;
- 1968 Scientific reasoning/inference;
- INFORMATICS