Frictional melt generated by the 2008 Mw 7.9 Wenchuan earthquake and its faulting mechanisms
Abstract
Fault-related pseudotachylytes are considered as fossil earthquakes, conveying significant information that provide improved insight into fault behaviors and their mechanical properties. The WFSD project was carried out right after the 2008 Wenchuan earthquake, detailed research was conducted in the drilling cores. 2 mm rigid black layer with fresh slickenlines was observed at 732.6 m in WFSD-1 cores drilled at the southern Yingxiu-Beichuan fault (YBF). Evidence of optical microscopy, FESEM and FIB-TEM show it's frictional melt (pseudotachylyte). In the northern part of YBF, 4 mm fresh melt was found at 1084 m with similar structures in WFSD-4S cores. The melts contain numerous microcracks. Considering that (1) the highly unstable property of the frictional melt (easily be altered or devitrified) under geological conditions; (2) the unfilled microcracks; (3) fresh slickenlines and (4) recent large earthquake in this area, we believe that 2-4 mm melt was produced by the 2008 Wenchuan earthquake. This is the first report of fresh pseudotachylyte with slickenlines in natural fault that generated by modern earthquake. Geochemical analyses show that fault rocks at 732.6 m are enriched in CaO, Fe2O3, FeO, H2O+ and LOI, whereas depleted in SiO2. XRF results show that Ca and Fe are enriched obviously in the 2.5 cm fine-grained fault rocks and Ba enriched in the slip surface. The melt has a higher magnetic susceptibility value, which may due to neoformed magnetite and metallic iron formed in fault frictional melt. Frictional melt visible in both southern and northern part of YBF reveals that frictional melt lubrication played a major role in the Wenchuan earthquake. Instead of vesicles and microlites, numerous randomly oriented microcracks in the melt, exhibiting a quenching texture. The quenching texture suggests the frictional melt was generated under rapid heat-dissipation condition, implying vigorous fluid circulation during the earthquake. We surmise that during earthquakes vigorous fluid influx within fault zone, likely dissipating the frictional heat and resulting in rapid temperature drop, may facilitate the solidification of melt and hamper the aftermost fault slip. Meanwhlie, the high temperature fluid-rock interaction may play an important role in the chemical elements migrating in fault zones.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMGP44A..02W
- Keywords:
-
- 1518 Magnetic fabrics and anisotropy;
- GEOMAGNETISM AND PALEOMAGNETISM;
- 1519 Magnetic mineralogy and petrology;
- GEOMAGNETISM AND PALEOMAGNETISM;
- 1525 Paleomagnetism applied to tectonics: regional;
- global;
- GEOMAGNETISM AND PALEOMAGNETISM;
- 1527 Paleomagnetism applied to geologic processes;
- GEOMAGNETISM AND PALEOMAGNETISM