Accounting for the Effect of Earth's Rotation in Magnetotelluric Inference
Abstract
The study of geomagnetism has been documented as far back as 1722 when the watchmaker G. Graham constructed a more sensitive compass and showed that the variations in geomagnetic direction varied with an irregular daily pattern. Increased interest in geomagnetism in geomagnetism began at the end of the 19th century (Lamb, Schuster, Chapman, and Price). The Magnetotelluric Method was first introduced in the 1950's (Cagniard and Tikhonov), and, at its core, is simply a regression problem. The result of this method is a transfer function estimate which describes the earth's response to magnetic field variations. This estimate can then be used to infer the earth's subsurface structure; useful for applications such as natural resource exploration. The statistical problem of estimating a transfer function between geomagnetic and induced current measurements has evolved since the 1950's due to a variety of problems: non-stationarity, outliers, and violation of Gaussian assumptions. To address some of these issues, robust regression methods (Chave and Thomson, 2004) and the remote reference method (Gambel, 1979) have been proposed and used. The current method seems to provide reasonable estimates, but still requires a large amount of data. Using the multitaper method of spectral analysis (Thomson, 1982), taking long (greater than 4 months) blocks of geomagnetic data, and concentrating on frequencies below 1000 microhertz to avoid ultraviolet effects, one finds that:1) the cross-spectra are dominated by many offset frequencies including plus and minus 1 and 2 cycles per day;2) the coherence at these offset frequencies is often stronger than at zero offset;3) there are strong couplings from the "quasi two-day" cycle;4) frequencines are usually not symmetric;5) the spectra are dominated by the normal modes of the Sun. This talk will discuss the method of incorporating these observations into the transfer function estimation model, some of the difficulties that arose, their solutions, and current results.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMGP32A..08R
- Keywords:
-
- 0925 Magnetic and electrical methods;
- EXPLORATION GEOPHYSICS;
- 1515 Geomagnetic induction;
- GEOMAGNETISM AND PALEOMAGNETISM;
- 3006 Marine electromagnetics;
- MARINE GEOLOGY AND GEOPHYSICS;
- 5109 Magnetic and electrical properties;
- PHYSICAL PROPERTIES OF ROCKS