Thermokarst lake dynamics and its influence on biogeochemical sediment characteristics: A case study from the discontinuous permafrost zone in Interior Alaska
Abstract
Under currently projected scenarios of climate warming, discontinuous warm permafrost in Interior Alaska is expected to experience widespread disappearance. Thermokarst ponds and lakes are evidence for rapid permafrost thaw and amplify deep thaw by talik development. During the thawing process, previously preserved organic matter is made available for decomposition and former permafrost carbon is potentially released as greenhouse gases carbon dioxide and methane. In the course of lake development and shoreline expansion, both, younger near-surface and older organic matter from slumping shores are potentially deposited in the lake basin. Lake internal bioproductivity is complementing carbon accumulation in lacustrine deposits and provides an additional source of young carbon. This study presents results of two intersecting, limnolithological transects of 5 sediment cores from Goldstream Lake, a typical small, boreal thermokarst lake in Interior Alaska. We here distinguish external terrestrial and internal aquatic carbon contributions to sediments based on sediment samples that were analyzed for the total organic carbon/total nitrogen ratio (C/N) as well as stable carbon isotopes. The littoral zone with actively eroding shorelines is characterized by methane seeps produced from anaerobic microbial decomposition; however, near-shore sediments have surprisingly low total organic carbon contents with a mean of 1.5 wt%; the low C/N ratio of 8.7 indicate a dominance of lacustrine plant material. Very similar results were found for sediments in the central basin, but here a clear shift to a terrestrial carbon signal (C/N of 22) with total organic carbon content of almost 30 wt% is presumably indicating the presence of a trash layer featuring largely terrestrial plants submerged during the initial lake phase. The talik sediments have carbon storage similar to the lake sediments but in contrast are not layered. Subarctic aquatic environments such as Goldstream Lake demonstrate a high aquatic productivity as well as a high biogeochemical turn-over over short periods of time. In addition, the ongoing decomposition of organic matter in talik sediments proves to be crucial to assess the contribution of thermokarst lakes to future climate change by mobilizing soil carbon previously frozen in permafrost.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMGC53D0927L
- Keywords:
-
- 0475 Permafrost;
- cryosphere;
- and high-latitude processes;
- BIOGEOSCIENCES;
- 0710 Periglacial processes;
- CRYOSPHERE;
- 1615 Biogeochemical cycles;
- processes;
- and modeling;
- GLOBAL CHANGE;
- 4323 Human impact;
- NATURAL HAZARDS