Natural and anthropogenic land cover change and its impact on the regional climate and hydrological extremes over Sanjiangyuan region
Abstract
Located in the northern Tibetan Plateau, Sanjiangyuan is the headwater region of the Yellow River, Yangtze River and Mekong River. Besides climate change, natural and human-induced land cover change (e.g., Graze for Grass Project) is also influencing the regional hydro-climate and hydrological extremes significantly. To quantify their impacts, a land surface model (LSM) with consideration of soil moisture-lateral surface flow interaction and quasi-three-dimensional subsurface flow, is used to conduct long-term high resolution simulations driven by China Meteorological Administration Land Data Assimilation System forcing data and different land cover scenarios. In particular, the role of surface and subsurface lateral flows is also analyzed by comparing with typical one-dimensional models. Lateral flows help to simulate soil moisture variability caused by topography at hyper-resolution (e.g., 100m), which is also essential for simulating hydrological extremes including soil moisture dryness/wetness and high/low flows. The LSM will also be coupled with a regional climate model to simulate the effect of natural and anthropogenic land cover change on regional climate, with particular focus on the land-atmosphere coupling at different resolutions with different configurations in modeling land surface hydrology.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMGC43E1108J
- Keywords:
-
- 1631 Land/atmosphere interactions;
- GLOBAL CHANGE;
- 1655 Water cycles;
- GLOBAL CHANGE;
- 1812 Drought;
- HYDROLOGY;
- 1821 Floods;
- HYDROLOGY