Agricultural response functions to changes in carbon, temperature, and water based on the C3MP data set
Abstract
Agricultural yields vary depending on temperature, precipitation/irrigation conditions, fertilizer application, and CO2 concentration. The Coordinated Climate-Crop Modeling Project (C3MP), conducted as a component of the Agricultural Model Intercomparison and Improvement Project (AgMIP), organized a sensitivity experiments across carbon-temperature-water (CTW) space across 1100 management conditions in 50+ countries, sampling 15 crop species and 20 crop models. Such coordinated sensitivity tests allow for the building of emulators of yield response to changes in CTW values, allowing rapid estimation of yield changes from the types of climate changes projected by the climate modeling community. The resulting emulator may be used to supply agricultural responses to climate change in any user-defined scenario, rather than the restriction to the RCPs in many past works. We present the resulting emulators built from the C3MP output data set for use in the Global Change Assessment Model (GCAM) integrated assessment model that allows for the co-evolution of socioeconomic development, greenhouse gas emissions, climate change, and agricultural sector ramifications. C3MP-based emulators may be of use in designing agricultural impact studies in other IAMs, and we place them in the context of past crop modeling efforts, including the Challinor et al. Meta-analysis, the AgMIP Wheat team results, the AgMIP Global Gridded Crop Model Intercomparison (GGCMI) fast-track modeling results, and the MACSUR impact response surface results.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMGC41D1035S
- Keywords:
-
- 3305 Climate change and variability;
- ATMOSPHERIC PROCESSES;
- 0402 Agricultural systems;
- BIOGEOSCIENCES;
- 1630 Impacts of global change;
- GLOBAL CHANGE;
- 1631 Land/atmosphere interactions;
- GLOBAL CHANGE