Decadal changes in tundra land cover on Yamal Peninsula, Northwest Siberia
Abstract
The Yamal-Nenets Okrug in Russia has experienced significant changes in land use and climate in recent decades. Average year-round air temperatures have increased ca. 2°C since the 1970's, with much - but not all - of the warming taking place in winter. In association with ongoing summer warming, the annual growth of erect deciduous shrubs has been accelerating while growing season seasonality has diminished, characterized by shifts in the spatial patterns of key phenological parameters. We prepared LANDSAT-derived land cover classifications for 1988 and 2014 using change detection analysis, supported by extensive ground truthing bolstered with data from Very High-Resolution (VHR) imagery (e.g. Quickbird-2, Worldview-2/3). Research was conducted within summer reindeer pastures utilized by the Yarsalinksi sovhoz, whose animals are collectively owned, as well as many privately-owned herds. The area represents bioclimatic Subzone D of the Circumpolar Arctic Vegetation Map and covers about 8500 km2. This is a key subzone for several reasons: (1) it includes Bovanenkovo, the first and largest gas deposit on Yamal to be developed; (2) it is a zone of extremely active periglacial processes (e.g. active layer detachment slides, lake drainage and recent methane-mediated craters); and (3) it is characterized by steadily increasing growth of tall willow shrubs (Salix spp.), which comprise an important source of fodder by reindeer migrating through the area in summer. These results are unique as our dataset: (1) covers sizable inland regions lying entirely within the Russian tundra zone; (2) derives from extensive ground truthing; and (3) treats all plant taxonomic groups (vascular, bryophytes, lichens) at the plot scale. Here we present the first such classifications, based on LANDSAT images from 1988 and 2014. We identify 16 classes ranging from bare ground and drained lakes, anthropogenic disturbances, through several wetland types, to various dwarf and erect tundra shrub habitats. Given that Yamal is such a highly dynamic periglacial environment, our change detection results over a 36-year period strongly indicate that several processes, such as drying tundra lakes, landslides, expanding gas development, will continue to influence the changes in landscape-level vegetation and permafrost substrate processes.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMGC32C..06F
- Keywords:
-
- 0475 Permafrost;
- cryosphere;
- and high-latitude processes;
- BIOGEOSCIENCES;
- 1615 Biogeochemical cycles;
- processes;
- and modeling;
- GLOBAL CHANGE;
- 1627 Coupled models of the climate system;
- GLOBAL CHANGE;
- 4327 Resilience;
- NATURAL HAZARDS