Integrated model-experimental framework to assess carbon cycle components in disturbed mountainous terrain
Abstract
In forests vulnerable to drought and fire, there is critical need for in situ carbon and water balance measurements that can be integrated with earth system modeling to predict climate feedbacks. Model development can be improved by measurements that inform a mechanistic understanding of the component fluxes of net carbon uptake (i.e., NPP, autotrophic and heterotrophic respiration) and water use, with specific focus on responses to climate and disturbance. By integrating novel field-based instrumental technology, existing datasets, and state-of-the-art earth system modeling, we are attempting to 1) quantify the spatial and temporal impacts of forest thinning on regional biogeochemical cycling and climate 2) evaluate the impact of forest thinning on forest resilience to drought and disturbance in the Northern Rockies ecoregion. The combined model-experimental framework enables hypothesis testing that would otherwise be impossible because the use of new in situ high temporal resolution field technology allows for research in remote and mountainous terrains that have been excluded from eddy-covariance techniques. Our preliminary work has revealed some underlying difficulties with the new instrumentation that has led to new ideas and modified methods to correctly measure the component fluxes. Our observations of C balance following the thinning operations indicate that the recovery period (source to sink) is longer than hypothesized. Finally, we have incorporated a new plant functional type parameterization for Northern Rocky mixed-conifer into our simulation modeling using regional and site observations.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMGC24G..08S
- Keywords:
-
- 1615 Biogeochemical cycles;
- processes;
- and modeling;
- GLOBAL CHANGE;
- 1630 Impacts of global change;
- GLOBAL CHANGE;
- 1631 Land/atmosphere interactions;
- GLOBAL CHANGE;
- 1694 Instruments and techniques;
- GLOBAL CHANGE