Integrating Environmental and Mosquito Data to Model Disease: Evaluating Alternative Modeling Approaches for Forecasting West Nile Virus in South Dakota, USA
Abstract
South Dakota has the highest annual incidence of human cases of West Nile virus (WNV) in all US states, and human cases can vary wildly among years; predicting WNV risk in advance is a necessary exercise if public health officials are to respond efficiently and effectively to risk. Case counts are associated with environmental factors that affect mosquitoes, avian hosts, and the virus itself. They are also correlated with entomological risk indices obtained by trapping and testing mosquitoes. However, neither weather nor insect data alone provide a sufficient basis to make timely and accurate predictions, and combining them into models of human disease is not necessarily straightforward. Here we present lessons learned in three years of making real-time forecasts of this threat to public health. Various methods of integrating data from NASA's North American Land Data Assimilation System (NLDAS) with mosquito surveillance data were explored in a model comparison framework. We found that a model of human disease summarizing weather data (by polynomial distributed lags with seasonally-varying coefficients) and mosquito data (by a mixed-effects model that smooths out these sparse and highly-variable data) made accurate predictions of risk, and was generalizable enough to be recommended in similar applications. A model based on lagged effects of temperature and humidity provided the most accurate predictions. We also found that model accuracy was improved by allowing coefficients to vary smoothly throughout the season, giving different weights to different predictor variables during different parts of the season.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMGC13H0846D
- Keywords:
-
- 1699 General or miscellaneous;
- GLOBAL CHANGE